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Linearity and scaling of a statistical model for the species abundance distribution
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We derive dinear recursion relation for the species abundance distribution in a statistical model of ecology
and demonstrate the existence of a scaling solution.
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. INTRODUCTION [P(R’|L")]. By symmetryP(R’|L)=P(R|L’); andais de-
) ) ) ) _ fined asP(R’|L)=1—a. The probability of finding a spe-

Understanding the relationship between species richnesges on the right side, independently of what happens on the
in a biome and its corresponding area is a long-standingsft side, is
problem in ecology, providing important information about
species richness, extinction of species due to habitat loss, and P(R’)=P(R’|[L)+P(R’|L")
the design of reserveldl]. Among the most usually cited
mathematical functions relating the number of different spe-
cies(S and the area they occupy) is the power law form  self-similarityis introduced by stating that is independent
of the species-area relationshix=cA?. In a paper by Harte of i, that is, scale.
et al.[2] this result was shown to be equivalent to assuming Two conclusions can be derived from this: a species-area
self-similarity in the distribution of species. Furthermore, there|ationship of the kinds=cA? with a=2"2 and a recursion
species abundance distributi®g(n), the fraction of species relation for P;(n) (the expected fraction of species with
with nindividuals, was found to satisfy a nonlinear recursioningividuals for an are#; ; see Fig. 1[2]:
relation.

Banavaret al. went on to show that this model exhibits
scaling data collapse in the same way as observed in the Pi(”):XPi+1(n)+(1—X)k21 Pi+1(n—K)Pi;1(k),
two-dimensionaXY model and in the power fluctuations in a ©)
closed turbulent flow 3], a result that follows from hyper-
scaling[4]. Alternative models for taxon abundance and thewherex=2(1—a). This recursion relation requires an initial
species-area law have been proposed, and may be found ¢andition. It is supplied by defining a minimum patet,

[5] and[6]. Our work here is a technical contribution to the =Ay/2", such that it contains on average only one individual
specific model proposed by Harét al, and its conclusions

=l1-a+2a—-1=a=P(L’') by symmetry. (1)

n-1

are not germane to these other models. A4 A A A A
The purpose of this paper is to show that the nonlinear = "3 S S S

recursion relation can be recast akn@ar recursion relation 0 °t tee

for the species abundance distribution that is much easier to B @) B (3)-(1-a) (1-a)-B (3)

handle; indeed, since the equation governs a probability dis-

tribution, it is natural to expect that a linear equation is A5 A5 As A5

obeyed. By means of this recursion relation we derive the +

scaling functionassumedy Banavaret al. [7]. R N i M

(2a-1)-E (2)-K (1) (3a-1)- B (1)E (2)

Il. THE MODEL AND THE NONLINEAR RECURSION

FIG. 1. Explanation of Eq.2). L nsider th $e4 an
RELATION G planation of Eq2). Let us consider the case-4 and

n= 3. Circles correspond to individuals of a particular species found

In the model proposed by Harég al.[2] an aread, with in a patch. On the left side there are three individuals in the patch
a number of specieS, is considered. The number of indi- A,; on the right side are all the possible ways in which those three
viduals in each species is described B(n), where individuals can be distributed in the two patchfes The probabil-

SyPo(n) is the expected number of species witindividu- ity of finding t_h_ree |nd|V|duaIs_|n _th_e patch, is then the_ addition
. . of the probability that all the individuals are on one sigeob. 1
als. The ared\ is chosen to be in the shape of a rectangle . e S
—a) times the probability that once all the individuals are on one

Wlth.lts length beingv2 “”.‘es |ts_ W".jth’ such t.hz_it by_ a bi- side there are no individuals on one side and there are three indi-
section along the Ionge_r ‘,j'mens'on It C,an be d'V',ded into tWQ/iduaIs on the other sidgrob. 1X P5(3)] plus the probability that
rectangles of shape similar to the origirake Fig. 1 A he species are present on both sifieob. 2(1-a)] times the
=Ad/2' is the area of the rectangle after ttis bisection. If & propability that once the species are present on both sides there are
species is present in an ar@a, and nothing else is known two individuals on one side and one individual on the offpeob.
about the species, there are three possibilities: it might be_(2)x P(1)]. Taking x=2(1—a) and 1-x=2a—1 we find
presenbnly on the right subpartition of are®; _, [probabil-  P,(3)=xPs(3)+(1—x)2P5(2)Ps(1). This can be generalized to

ity P(R’[L)], only on the left one[P(R|L’)], or in both  obtain Eq.(2). Figure taken fronj2].

1063-651X/2002/663)/0329014)/$20.00 65032901-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E 65 032901

A This formula is the probability of finding; individuals in
’ﬂq . the first box,n, in the second one, etc., while the Kronecker
) 5 function limits the possibilities to those that add up to the
total number of individuals. 2/ ' is the maximum number
of boxes and 27! is the maximum number of individuals in
each box.
R}(r) is the probability of findingr boxes of sizeA; in
which the species is present, in a total afga This is just

Ri(r)=Pmyi—j(r). (5)

This follows because the reasoning expressed in Fig. 1 can

] o S ) be applied to find the same recursion reIationR@(rr) as for
FIG. 2. A, is the minimum patchA; in this case comprises two Pi(n):
i(n):

minimum patches, but it can be of any size. In E2). the contri-

butions toP;(n) come from the two patches of sizg, ;, whereas r—1
in the case qf th.e linear recursion relation they come from the 2 R}(r) =XR}+1(r)+ (1_X)2 R}H(k) R}-%—l(r —K). (6)
patches of sizé,; . k=1

(see Fig. 2 ConsequentlyP,,(n)=§,;. This also limits the
maximum number of individuals that can be found in a patch_
A; to 2" " so P;(n)=0 for n>2m"1,

The initial conditions do not change either, Wlﬂ%J(r)
= J,1. The only difference from the derivation fét; (n) is
thatr refers to the number of boxésot individualg and that

Il. THE LINEAR RELATION the recursion has to be applige-i times instead om—i
times.

Equation(2) is nonlinear, and thus inconvenient to handle e can now check that foj=i+1 we find the same
efficiently. The purpose of this section is to derive the scalingeg it as before:
relation for the probability distribution without making any
assumptions about the existence of moments of distribution. _
As we will see, this can be accomplished by deriving an  P;(n)= Z R,,(NQ,.(r,n)=R,,(1)Q!,,(1n)
equivalent linear relation for the probability distribution.
This derivation sums up multiple patches at once, rather than 5 5 7
proceeding strictly hierarchically as in the original deriva- |+1( )Q|+1( n). )
tion.

We consider that the contributions ®(n) come from Reading off from Eq(4):
several (27') patches of ared;=A;/2' (“boxes”) instead
of from two patches of areA; ,;=A;/2 as beforgsee Fig. i
2). The probability of findingn individuals inA, is then the Qi+1(27n)=k§=31 Pi+1(K)Pi1(n=k), 8
sum over the probabilities of findingof these “boxes” with
the species presehR'(r)] multiplied by the probability of

n—-1

finding a total ofn individuals in these boxes[Qj(r,n)1: Qi+2(1M=Piy(n), ©
2t R, ,(1)=x, (10

Pi(m =3 RI(NQ|(r.n). &) '
Ri;1(2)=1-X. (1D)

Note that the indeX is not summed over. It is arbitrary,
indicating the size of the “box.” Foj=i+1 there are two  Hence, we obtain
boxes of area;/2 and the original result of Hartet al. is
recovered, whereas fgr=m—1 we will find a linear rela- n-1
tion. Buf[ before establishing these results we explicitly cal-  P,(n)=xP,1(n)+(1—=x) >, Pi.1(K)P 1(n—k)
culateR;(r) andQj(r,n). k=1

(r n) is the probablhty of findingn individuals inr
boxes of sizeA;/2) in a total area; :

(12

as announced previously. To obtain a linear relation we set
Qj(r.n) j=m—1 and obtain

ZmZ_j_ (H PJ-(nl))cS(n—;nk), r<2i-, Qn-1(r,n)= ﬁ (Iljrlpm_lmo)a(n—g nk).

ni,..n=1
(13)
(4) For Pr,—1(Nn;) we have only the following possibilities:
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X, n|:1,
Pnoa(n)=y 1-x n=2, (14
0, nm#1,2.

We find, denoting byg=n—r the number of boxes with
two individuals[factors ofP,,_1(2) in the equation aboye

r!

mxr_q(l—X)q.

g(n,r)=Qi_4(r,n)= (15)
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Pi(x)/(1/2"""), where 1/2"" is the distance between two
points in the new variabla. In this way allP;(n) can be
compared with each other on equal terms.

In terms of these new variables, the recursion relation can
now be written as

1

>

y=1/2m"1"1

Pi(x)=2 g(2™ %, 2" 1" 1y)PiL (). (20)

The continuum limit is found by takingh (and consequently

The first factor is the number of possible configurations inhe number of pointd; . ;=2m"1~1) to an arbitrarily large

which there arey boxes with two individuals and—q with
one individual. Finally, we obtain

2m—i—1

Pi(n)= gl Pia(r)g(n,r), (16)

which is alinear relation involvingP;(n) andP; . 1(n).

IV. THE SCALING LAW

Equation(13) allows us to derive the scaling law that was

assumed by Banavat al. [7]:

1 /n
Pi(n)zﬁf(m)

whereN;(=2""") is the maximum number of individuals in
an areaA; and¢p=1—-z.

7

value and using the continuum limit @f(r,n) as defined
above. The fact that the approximation f@fr,n) is not a
very good one for small values of or r is of little impor-
tance in the limit of largem:

Pi(x)=22""1"13 g(2" ix 2" "1y Py (y) 127
Ay

1
= fo g*(x,y)P; 1 (y)dy, (21

whereg* (x,y)=22""1"1g(2™ 'x,2""'~1y) and is equal to
(1/a) 6(y—x/a) in the limit of largem:

In order to achieve this, the following steps have to be

taken:
First, find thecontinuum limitfor g(r,n). Sinceg(r,n) is
just a binomial distribution, it tends to a Gaussian for lange

r!

g(n,r)=mxr‘q(l—x)q

1 1 p( 1(q—r(1—x)2>
%——ex —_—————————
V27 X(1—X) 2 rx(1-x)

1 1 [{ (r—n/2a)?
\/;fa,r 2a ;

ea,r
€ar=V4(2a—1)(1—a)r/(2a)?.

, (18

19

g(n,r) is the probability of findingh individuals inr boxes.
This probability is highly peaked around=2ar, since
2a[=1(1—-a)+1(1—a)+2(2a—1)] is the average of in-
dividuals per box. The more boxes there doeggerr) the
sharper the peak. This means that for largde only rel-
evant values of are those nean=2ar and the expression
given above forg(n,r) is valid for larger (which implies
largen).

Second, rewrite everything in terms of a new variable
and a new probability densitl;(x). x replaces and is the
fraction of the total number of species/N; (which varies

from 0 to 1. Ei(n) is the density probability

* )—LL 1 1 (y_x/a)zzm—i—l
g¥(x,y)= \/EZa € a 2(m—i—1)/zeXP Ef,a
. 5 —
1 1 1 (y—x/a)?
== ex , 22
V7 24 €40 P (e, .0 (22

which is a standard representation of the Diéfanction[8]
in the x/a variable fore, ,6— (or m—o):

lim fg*(x,y)f(x)dx=f(ay)

1
= lim g*(x,y)=—=48(y—x/a). (23
m— e a‘
This implies that
_ 1_
Pi(x)=_Pi11(x/a) (24)
which is, in terms o and P;(n),
1
Pi(n)= gPiH(n/Za). (25

Sincea=2"% and ¢=1—2z, multiplying the above equation
by n and writing the explicit dependence Bf(n) on N; as
Pi(n)=P(n,N;), we obtain
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n n
nP(n,N;)= zP(n/Za,NHl): %a P(n/2a,N;/2)=f(n,N;)

As can be appreciated from the results above, a conatant
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FIG. 3. Scaling functionnPgy(n)=f(n/N?)
for m=8 andm=9, andz=0.4 andz=0.5. n*
=n/2¢=n/2a.

1
Pi<n>:ﬁf($). @)

=nP(n.N;) = = P(n/2¢ Ni/2). 26 (not dependent of) is necessary to obtain the scaling law:
(N =53 P( 2) 26 otherwise ¢ would depend ori. In Fig. 3 we exhibit the
scaling function for severat and demonstrate the scaling

law.

which is by definitionf(n/2¢,N;/2). SinceN; is equal to a
power of 2 this means thatPi(n) is a function only of
n/N?:
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