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Linearity and scaling of a statistical model for the species abundance distribution
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We derive alinear recursion relation for the species abundance distribution in a statistical model of ecology
and demonstrate the existence of a scaling solution.
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I. INTRODUCTION

Understanding the relationship between species richn
in a biome and its corresponding area is a long-stand
problem in ecology, providing important information abo
species richness, extinction of species due to habitat loss
the design of reserves@1#. Among the most usually cited
mathematical functions relating the number of different s
cies ~S! and the area they occupy~A! is the power law form
of the species-area relationship:S5cAz. In a paper by Harte
et al. @2# this result was shown to be equivalent to assum
self-similarity in the distribution of species. Furthermore, t
species abundance distributionP0(n), the fraction of species
with n individuals, was found to satisfy a nonlinear recursi
relation.

Banavaret al. went on to show that this model exhibi
scaling data collapse in the same way as observed in
two-dimensionalXYmodel and in the power fluctuations in
closed turbulent flow@3#, a result that follows from hyper
scaling@4#. Alternative models for taxon abundance and t
species-area law have been proposed, and may be fou
@5# and @6#. Our work here is a technical contribution to th
specific model proposed by Harteet al., and its conclusions
are not germane to these other models.

The purpose of this paper is to show that the nonlin
recursion relation can be recast as alinear recursion relation
for the species abundance distribution that is much easie
handle; indeed, since the equation governs a probability
tribution, it is natural to expect that a linear equation
obeyed. By means of this recursion relation we derive
scaling functionassumedby Banavaret al. @7#.

II. THE MODEL AND THE NONLINEAR RECURSION
RELATION

In the model proposed by Harteet al. @2# an areaA0 with
a number of speciesS0 is considered. The number of ind
viduals in each species is described byP0(n), where
S0P0(n) is the expected number of species withn individu-
als. The areaA0 is chosen to be in the shape of a rectan
with its length being& times its width, such that by a bi
section along the longer dimension it can be divided into t
rectangles of shape similar to the original~see Fig. 1!. Ai
5A0/2

i is the area of the rectangle after thei th bisection. If a
species is present in an areaAi , and nothing else is known
about the species, there are three possibilities: it migh
presentonly on the right subpartition of areaAi 21 @probabil-
ity P(R8uL!#, only on the left one@P(RuL8)#, or in both
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@P(R8uL8)#. By symmetryP(R8uL)5P(RuL8); anda is de-
fined asP(R8uL)[12a. The probability of finding a spe-
cies on the right side, independently of what happens on
left side, is

P~R8!5P~R8uL !1P~R8uL8!

512a12a215a5P~L8! by symmetry. ~1!

Self-similarity is introduced by stating thata is independent
of i, that is, scale.

Two conclusions can be derived from this: a species-a
relationship of the kindS5cAz with a522z and a recursion
relation for Pi(n) ~the expected fraction of species withn
individuals for an areaAi ; see Fig. 1! @2#:

Pi~n!5xPi 11~n!1~12x! (
k51

n21

Pi 11~n2k!Pi 11~k!,

~2!

wherex52(12a). This recursion relation requires an initia
condition. It is supplied by defining a minimum patchAm
5A0/2m, such that it contains on average only one individu

FIG. 1. Explanation of Eq.~2!. Let us consider the casei 54 and
n53. Circles correspond to individuals of a particular species fou
in a patch. On the left side there are three individuals in the pa
A4 ; on the right side are all the possible ways in which those th
individuals can be distributed in the two patchesA5 . The probabil-
ity of finding three individuals in the patchA4 is then the addition
of the probability that all the individuals are on one side~prob. 1
2a! times the probability that once all the individuals are on o
side there are no individuals on one side and there are three
viduals on the other side@prob. 13P5(3)# plus the probability that
the species are present on both sides@prob. 2(12a)# times the
probability that once the species are present on both sides ther
two individuals on one side and one individual on the other@prob.
P5(2)3P5(1)#. Taking x52(12a) and 12x52a21 we find
P4(3)5xP5(3)1(12x)2P5(2)P5(1). This can be generalized to
obtain Eq.~2!. Figure taken from@2#.
©2002 The American Physical Society01-1
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~see Fig. 2!. Consequently,Pm(n)5dn1 . This also limits the
maximum number of individuals that can be found in a pa
Ai to 2m2 i so Pi(n)50 for n.2m2 i .

III. THE LINEAR RELATION

Equation~2! is nonlinear, and thus inconvenient to hand
efficiently. The purpose of this section is to derive the scal
relation for the probability distribution without making an
assumptions about the existence of moments of distribut
As we will see, this can be accomplished by deriving
equivalent linear relation for the probability distributio
This derivation sums up multiple patches at once, rather t
proceeding strictly hierarchically as in the original deriv
tion.

We consider that the contributions toPi(n) come from
several (2j 2 i) patches of areaAj5Ai /2

j ~‘‘boxes’’ ! instead
of from two patches of areaAi 115Ai /2 as before~see Fig.
2!. The probability of findingn individuals inAi is then the
sum over the probabilities of findingr of these ‘‘boxes’’ with
the species present@Rj

i (r )#, multiplied by the probability of
finding a total ofn individuals in theser boxes@Qj

i (r ,n)#:

Pi~n!5 (
r 51

2 j 21

Rj
i ~r !Qj

i ~r ,n!. ~3!

Note that the indexj is not summed over. It is arbitrary
indicating the size of the ‘‘box.’’ Forj 5 i 11 there are two
boxes of areaAi /2 and the original result of Harteet al. is
recovered, whereas forj 5m21 we will find a linear rela-
tion. But before establishing these results we explicitly c
culateRj

i (r ) andQj
i (r ,n).

Qj
i (r ,n) is the probability of findingn individuals in r

boxes of sizeAi /2
j in a total areaAi :

Qj
i ~r ,n!

5H (
n1 ...nn51

2m2 j S )
l 51

r

Pj~nl !D dS n2(
k

nkD , r<2 j 2 i ,

0, r .2 j 2 i .
J
~4!

FIG. 2. Am is the minimum patch.Aj in this case comprises two
minimum patches, but it can be of any size. In Eq.~2! the contri-
butions toPi(n) come from the two patches of sizeAi 11 , whereas
in the case of the linear recursion relation they come from the 2j 2 i

patches of sizeAj .
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This formula is the probability of findingn1 individuals in
the first box,n2 in the second one, etc., while the Kroneck
d function limits the possibilities to those that add up to t
total number of individualsn. 2j 2 i is the maximum number
of boxes and 2m2 j is the maximum number of individuals in
each box.

Rj
i (r ) is the probability of findingr boxes of sizeAj in

which the species is present, in a total areaAi . This is just

Rj
i ~r !5Pm1 i 2 j~r !. ~5!

This follows because the reasoning expressed in Fig. 1
be applied to find the same recursion relation forRj

i (r ) as for
Pi(n):

Rj
i ~r !5xRj

i 11~r !1~12x!(
k51

r 21

Rj
i 11~k!Rj

i 11~r 2k!. ~6!

The initial conditions do not change either, withRj
j (r )

5d r1 . The only difference from the derivation forPi(n) is
thatr refers to the number of boxes~not individuals! and that
the recursion has to be appliedj 2 i times instead ofm2 i
times.

We can now check that forj 5 i 11 we find the same
result as before:

Pi~n!5(
r

Ri 11
i ~r !Qi 11

i ~r ,n!5Ri 11
i ~1!Qi 11

i ~1,n!

1Ri 11
i ~2!Qi 11

i ~2,n!. ~7!

Reading off from Eq.~4!:

Qi 11
i ~2,n!5 (

k51

n21

Pi 11~k!Pi 11~n2k!, ~8!

Qi 11
i ~1,n!5Pi 11~n!, ~9!

Ri 11
i ~1!5x, ~10!

Ri 11
i ~2!512x. ~11!

Hence, we obtain

Pi~n!5xPi 11~n!1~12x! (
k51

n21

Pi 11~k!Pi 11~n2k!

~12!

as announced previously. To obtain a linear relation we
j 5m21 and obtain

Qm21
i ~r ,n!5 (

n1 ,...nr51

2 S )
l 51

r

Pm21~nl !D dS n2(
k

nkD .

~13!

For Pm21(nl) we have only the following possibilities:
1-2
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Pm21~nl !5H x, nl51,

12x, nl52,

0, nlÞ1,2.

~14!

We find, denoting byq[n2r the number of boxes with
two individuals@factors ofPm21(2) in the equation above#

g~n,r ![Qm21
i ~r ,n!5

r !

~r 2q!!q!
xr 2q~12x!q. ~15!

The first factor is the number of possible configurations
which there areq boxes with two individuals andn2q with
one individual. Finally, we obtain

Pi~n!5 (
r 51

2m2 i 21

Pi 11~r !g~n,r !, ~16!

which is alinear relation involvingPi(n) andPi 11(n).

IV. THE SCALING LAW

Equation~13! allows us to derive the scaling law that wa
assumed by Banavaret al. @7#:

Pi~n!5
1

n
f S n

Ni
fD ~17!

whereNi(52m2 i) is the maximum number of individuals i
an areaAi andf512z.

In order to achieve this, the following steps have to
taken:

First, find thecontinuum limitfor g(r ,n). Sinceg(r ,n) is
just a binomial distribution, it tends to a Gaussian for largen:

g~n,r !5
r !

~r 2q!!q!
xr 2q~12x!q

'
1

A2pr

1

Ax~12x!
expS 2

1

2

~q2r ~12x!2

rx~12x! D
5

1

Apea,r

1

2a
expS 2

~r 2n/2a!2

ea,r
2 D , ~18!

ea,r5A4~2a21!~12a!r /~2a!2. ~19!

g(n,r ) is the probability of findingn individuals inr boxes.
This probability is highly peaked aroundn52ar, since
2a@51(12a)11(12a)12(2a21)# is the average of in-
dividuals per box. The more boxes there are~bigger r! the
sharper the peak. This means that for larger the only rel-
evant values ofn are those nearn52ar and the expression
given above forg(n,r ) is valid for larger ~which implies
largen!.

Second, rewrite everything in terms of a new variablex

and a new probability densityP̄i(x). x replacesn and is the
fraction of the total number of species:n/Ni ~which varies
from 0 to 1!. P̄i(n) is the density probability
03290
e

Pi(x)/(1/2m2 i), where 1/2m2 i is the distance between tw
points in the new variablex. In this way all Pi(n) can be
compared with each other on equal terms.

In terms of these new variables, the recursion relation
now be written as

P̄i~x!52 (
y51/2m2 i 21

1

g~2m2 ix,2m2 i 21y!P̄i 11~y!. ~20!

The continuum limit is found by takingm ~and consequently
the number of pointsNi 1152m2 i 21! to an arbitrarily large
value and using the continuum limit ofg(r ,n) as defined
above. The fact that the approximation forg(r ,n) is not a
very good one for small values ofn or r is of little impor-
tance in the limit of largem:

~21!

whereg* (x,y)522m2 i 21g(2m2 ix,2m2 i 21y) and is equal to
(1/a)d(y2x/a) in the limit of largem:

~22!

which is a standard representation of the Diracd function @8#
in the x/a variable forey,ad→` ~or m→`!:

lim
m→`

E g* ~x,y! f ~x!dx5 f ~ay!

⇒ lim
m→`

g* ~x,y!5
1

a
d~y2x/a!. ~23!

This implies that

P̄i~x!5
1

a
P̄i 11~x/a! ~24!

which is, in terms ofn andPi(n),

Pi~n!5
1

2a
Pi 11~n/2a!. ~25!

Sincea522z andf512z, multiplying the above equation
by n and writing the explicit dependence ofPi(n) on Ni as
Pi(n)5P(n,Ni), we obtain
1-3
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FIG. 3. Scaling functionnP0(n)5 f (n/Ni
f)

for m58 andm59, andz50.4 andz50.5. n*
[n/2f5n/2a.
nt
w:

g

for
a-
9-
nP~n,Ni !5
n

2a
P~n/2a,Ni 11!5

n

2a
P~n/2a,Ni /2!⇒ f ~n,Ni !

[nP~n,Ni !5
n

2f P~n/2f,Ni /2!, ~26!

which is by definitionf (n/2f,Ni /2). SinceNi is equal to a
power of 2 this means thatnPi(n) is a function only of
n/Ni

f :
03290
Pi~n!5
1

n
f S n

Ni
fD . ~27!

As can be appreciated from the results above, a constaa
~not dependent oni! is necessary to obtain the scaling la
otherwisef would depend oni. In Fig. 3 we exhibit the
scaling function for severalz and demonstrate the scalin
law.
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